
2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

1

ES2: Building an Efficient and Responsive
Event Path for I/O Virtualization

Xiaokang Hu, Jian Li, Member, IEEE, Ruhui Ma, Member, IEEE and Haibing Guan, Member, IEEE

Abstract—Hypervisor intervention in the virtual I/O event path is a main performance bottleneck for I/O virtualization because of the
incurred costly VM exits. The shortcomings of prior software solutions against virtual interrupt delivery, a major source of VM exits,
promoted the emergence of the hardware-based Posted-Interrupt (PI) technology. PI can provide non-exit interrupt delivery without
compromising any virtualization benefit. However, it only acts on the half of the event path, i.e., the interrupt path, while guests’ I/O
requests may also trigger a large amount of VM exits. Additionally, PI may still suffer a severe latency from the vCPU scheduling while
delivering interrupts. Aiming at an optimal event path, we propose ES2 to simultaneously improve bidirectional I/O event delivery
between guests and their devices. On the basis of PI, ES2 introduces hybrid I/O handling scheme for efficient I/O request delivery and
intelligent interrupt redirection for enhanced I/O responsiveness. It does not require any modification to guest OS. We demonstrate that
ES2 greatly reduces I/O-related VM exits with the exit handling time (EHT) below 2.5% for TCP streams and 0.1% for UDP streams,
increases guest throughput by 1.9x for Memcached and 1.6x for Nginx, and keeps guest latency at a low level.

Index Terms—I/O virtualization, Hypervisor, VM exits, Virtual interrupts, I/O requests, I/O performance.

F

1 INTRODUCTION

INPUT/OUTPUT (I/O) virtualization is one of the archi-
tectural foundations in today’s cloud infrastructures to

consolidate multiple logical I/O connections into a single
physical link [2], [3], [4]. With the rapid growth of data
center IP traffic (3-fold over the five years from 2016 to 2021,
as forecasted by Cisco Global Cloud Index [5]), it has been a
key issue to guarantee the performance of I/O virtualization
in cloud-based data centers [4], [6], [7].

The communication between a guest virtual machine
(VM) and its I/O devices involves a data path for data
movement and an event path for notification delivery. Pre-
vious efforts, such as shared memory I/O ring [8], [9], zero
copy transmit/receive [10], [11], [12] and virtual address
translation for DMA [13], [14], have made the performance
overhead associated with the data path largely negligible.
The remaining challenges mainly lie in the event path: fre-
quent hypervisor interventions trigger costly VM exits (i.e.,
guest/host context switches for trap-and-emulate [15], [16])
and lead to dramatical performance degradation [17], [18],
[19], [20], [21]. Concretely, I/O transactions with a virtual
(or paravirtual) device [22] incur three types of VM exits
continuously: the first one caused by guests’ I/O request
and the other two caused by virtual interrupt delivery and
completion, respectively.

Many prior studies identified virtual interrupts as the
major cause of VM exits and leveraged interrupt mod-
eration [23], [24] or substitution [17], [25], [26], [27] to
reduce exits. However, doing so is far from trivial, likely
impeding latency or causing wasted CPU cycles [19], [28].

This article extends a prior conference version [1] that appeared in the 46th
International Conference on Parallel Processing (ICPP ’17).

• X. Hu, R. Ma and H. Guan are with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, China.
E-mail: {hxkcmp, ruhuima, hbguan}@sjtu.edu.cn

• J. Li is with the School of Software, Shanghai Jiao Tong University, China.
E-mail: li-jian@sjtu.edu.cn

Recently, a novel software-based approach was proposed in
ELI [19] and DID [21] to eliminate the interrupt-related VM
exits without decreasing the number of interrupts. Its main
idea is to deprivilege virtual interrupt delivery by directly
employing physical interrupt controllers to serve guests.
However, this direct use of physical resources inevitably
compromises some important virtualization features (e.g.,
the multiplexing of physical CPU cores) and introduces
potential security issues.

The shortcomings of these software solutions promoted
the emergence of a hardware-assisted technology called
Posted-Interrupt (PI) [15], which opens a new era for inter-
rupt delivery. By posting virtual interrupts in the hardware-
based virtual interrupt controllers, PI provides non-exit
interrupt delivery and completion without compromising
any virtualization benefit. Despite its usefulness, PI still has
a distance to go before reaching an optimal virtual I/O
event path. First, PI only acts on the half of the event path,
i.e., the interrupt path, while guests’ I/O requests may also
incur frequent hypervisor interventions and become another
major source of VM exits, but often neglected. Second, al-
though PI inherently supports the multiplexing of physical
CPU cores, it may still suffer a severe latency from the
virtual CPU (vCPU) scheduling while delivering interrupts,
leading to the degradation of guests’ I/O responsiveness.

Aiming at an optimal virtual I/O event path, we pro-
pose ES2, an Efficient and reSponsive Event System to
simultaneously improve bidirectional I/O event delivery
between guests and their devices. ES2 first takes the PI
technology as a basis to provide non-exit interrupt delivery
and completion. Then, to throttle the VM exits triggered by
guests’ I/O requests, ES2 takes inspiration from the Linux
NAPI mechanism [29], [30] and adopts a hybrid scheme to
efficiently deliver I/O requests. This hybrid I/O handling
scheme performs proper switches between the existing exit-
based notification mode and a newly-added non-exit polling

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

2

mode, reaping the strengths of both notification and polling.
Two kinds of mode switch algorithms are designed: (1)
a generic algorithm named perceptive mode switch, which
determines the mode to use according to the real-time I/O
load; (2) a specific algorithm named optimistic mode switch,
which is more effective in reducing VM exits for the widely-
deployed query-reply type applications (e.g., database or
web server). Furthermore, to enhance guests’ I/O respon-
siveness, ES2 bridges the gap between the PI processing
and the vCPU scheduler, optimizing the PI mechanism by
intelligently selecting the most appropriate vCPU as the
new destination of virtual interrupts.

The design of ES2 is based on the paravirtual I/O model
[4], which achieves a good balance between performance
and flexibility and has become today’s most popular I/O
virtualization technology [20], [31], [32]. We have imple-
mented the ES2 prototype with the KVM hypervisor [33]
and its paravirtual I/O standard named virtio [9]. Partic-
ularly, in consideration of the scalability of ES2 (i.e., in
the case of multiple co-resident VMs with simultaneous
I/O activities), we combined a number of virtio back-end
I/O threads into one for fine-tuned scheduling. For another
important virtual I/O model, i.e., SR-IOV [34], the VM exits
triggered by guests’ I/O requests can be avoided owing to
the direct device assignment [14]. However, PI for SR-IOV
may also suffer from the vCPU scheduling, so the interrupt
redirection scheme of ES2 can be applied to it.

The performance advantages of ES2 have been validated
via extensive experiments that covered VM exit rate, net-
work throughput and I/O responsiveness. Both micro and
macro benchmarks were employed. In order to evaluate
the scalability of ES2, we varied the number of the co-
resident tested VMs with simultaneous I/O activities. The
experimental results show that ES2 greatly reduces the VM
exit rate, keeping the exit handling time (EHT) for I/O
processing below 2.5% for TCP streams and 0.1% for UDP
streams. Additionally, with the deployment of ES2, guest
throughput is increased by 1.9x for Memcached and 1.6x for
Nginx, and guest latency is kept at a low level.

In summary, this work makes the following contribu-
tions:

1) We analyze the shortcomings of software solutions
against interrupt-related VM exits and prove the
necessity of the hardware-assisted PI technology.

2) We propose ES2 to build a virtual I/O event path
with minimum VM exits and lowest latency. It does
not require any modification to guest OS.

3) Two kinds of mode switch algorithms are designed
for hybrid I/O handling scheme to efficiently de-
liver guests’ I/O requests.

4) We show the practical ES2 implementation on the
KVM hypervisor and evaluate its effectiveness and
scalability with extensive experiments.

The rest of the paper is organized as follows. Section 2
describes the background of I/O event architecture. Section
3 discusses the related work and the remaining challenges.
In section 4 and 5, we present the detailed design and imple-
mentation of ES2, respectively. In section 6, we evaluate ES2
using both micro and macro benchmarks. Section 7 gives
an analysis of the ES2 overhead. Section 8 discusses the

applicability of ES2 to SR-IOV. In section 9, we summarize
this paper and draw a conclusion.

2 BACKGROUND

This section first introduces the x86 bare-metal I/O event
architecture and then highlights the challenges with virtual
I/O event delivery.

2.1 x86 I/O Event Architecture
In x86 bare-metal environments, I/O events can be grouped
into two categories: (1) I/O instructions executed by the sys-
tem software to issue I/O requests; (2) hardware interrupts
generated by devices to signal the completion of I/O opera-
tions. An I/O request is delivered to a device by accessing its
registers, through either memory-mapped I/O (MMIO) or
port-mapped I/O (PMIO) [35]. The delivery of an interrupt
is performed by the per-core local Advanced Programmable
Interrupt Controller (APIC) [36], whose primary function is
to receive interrupts from internal or external sources and
send them to the CPU core for handling.

A local APIC contains a series of registers to maintain
the interrupt state, such as Interrupt Request Register (IRR),
Interrupt Service Register (ISR) and End Of Interrupt (EOI)
register. When an interrupt with vector v arrives, it first
prompts the local APIC to set the v-th bit of the IRR (i.e.,
IRR[v] = 1). Once the local APIC delivers this interrupt
to the corresponding core, IRR[v] is cleared and ISR[v] is
set, indicating the interrupt with vector v is currently in
service. The CPU core receiving this interrupt suspends the
current executing code and uses an in-memory table, named
Interrupt Descriptor Table (IDT), to invoke the appropriate
handler (here is the handler with index v). When the in-
terrupt handler finishes, it writes the EOI register to signal
the completion of the interrupt processing with vector v.
This action automatically triggers the local APIC to clear
ISR[v] and deliver the next pending interrupt in IRR with
the highest priority.

In summary, I/O event delivery in x86 bare-metal envi-
ronments involves three key operations: (1) the execution of
an I/O instruction to issue an I/O request; (2) the interrupt
delivery performed by the local APIC hardware; (3) the
EOI write operation (i.e., interrupt completion) from the
interrupt handler.

2.2 Challenges with Virtual I/O Event Delivery
In virtualized environments, an additional software layer
between the host’s hardware and guest OSes, called hy-
pervisor, complicates the delivery of I/O events. Since the
above-mentioned three key operations are privileged ones,
they inevitably incur hypervisor interventions (i.e., VM exits
for trap-and-emulate) to guarantee the correct running of
the virtualized system.

A VM exit is a transition between the currently running
VM and the hypervisor which must exercise system control
for a particular reason [15], [16]. This kind of guest/host
context switch takes hundreds or thousands of cycles [37]
and may cause serious cache pollution. Consequently, the
frequent VM exits incurred in the virtual I/O event path
significantly impede guests’ I/O performance.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

3

Virtual CPU

(1)

VM
Exit

VM

Hypervisor

Device Driver

Virtual Device Emulated
Local APIC

VM
Exit

VM
Exit

VM Exit

(2)

(3)
(4)

(6) EOI

(5) IDT
Interrupt Handler

Phys ical Device

Fig. 1. I/O transactions with a virtual device

For I/O transactions with a virtual or paravirtual device
[22], three types of VM exits are continuously triggered, as
illustrated in Fig. 1:

• When the guest driver issues an I/O request (1), the
first type of VM exit is triggered. The hypervisor
handles this exit by sending a notification to the
virtual device, and then resumes the guest’s exe-
cution with a VM entry. When the virtual device
completes the requested I/O operation through the
sharing mechanism of the physical device (2), it may
generate a virtual interrupt to inform the VM (3). Or,
when the virtual device receives an ingress packet
from the physical device (2), it may also notify the
VM with a virtual interrupt (3).

• The virtual interrupt state is maintained by the per-
vCPU emulated local APIC (provided by the hyper-
visor). If the destination vCPU is currently running,
the emulated local APIC cannot directly deliver the
virtual interrupt, but kicks it first with an inter-
processor interrupt (IPI), triggering the second type
of VM exit, and then performs interrupt injection
during the next VM entry (4).

• Once the destination vCPU receives the injected in-
terrupt, it invokes the corresponding interrupt han-
dler specified in the guest IDT (5). Finally, the guest’s
EOI write operation triggers the third type of VM
exit (6), prompting the hypervisor to update the
corresponding registers in the emulated local APIC.

The advent of the direct device assignment [14] and SR-
IOV [34] allow a VM to directly access its assigned device,
thereby avoiding the exits incurred by I/O requests, but the
interrupt-related VM exits (i.e., the second and third types
of VM exits) still remain.

3 RELATED WORK AND MOTIVATION

This section discusses the software solutions against VM
exits in the virtual I/O environment, proves the necessity
of the hardware-assisted PI technology and analyzes the
remaining challenges.

3.1 Software Solutions against VM Exits

Many prior studies identified virtual interrupts as the major
cause of VM exits and proposed a number of software

approaches to reduce the interrupt-related VM exits. These
approaches can be classified into two categories: (1) decreas-
ing the number of virtual interrupts with either interrupt
moderation or substitution; (2) retaining all interrupts yet
eliminating the incurred VM exits.

Interrupt moderation: Dong et al. [23] used interrupt
moderation to reduce network overhead in a paravirtual
environment. Ahmad et al. [24] proposed a virtual inter-
rupt coalescing (vIC) scheme for virtual SCSI hardware
controllers to enhance I/O performance. It is true that fewer
interrupts mean fewer VM exits, but doing so is far from
trivial and may impede both latency and throughput [19],
[28].

Interrupt substitution: Liu et al. [17] proposed Vir-
tualization Polling Engine (VPE), which disables device
interrupts and takes advantage of dedicated VPE polling
threads to access I/O devices. Guan et al. [25] proposed a
smart Event-Based Polling model (sEBP), which leverages
existing system events to trigger a regular packet polling
and thus eliminates virtual network interrupts. Some fast
packet processing frameworks (e.g., Netmap [26] and DPDK
[27]) adopt the poll mode driver to replace the interrupt-
based driver so as to accelerate high-speed networking
applications. However, it is hard to control the frequency
of polling, likely leading to excess I/O latency or wasted
CPU cycles [19].

Actually, device interrupt is crucial for the system soft-
ware because it provides the ability to asynchronously
perceive external I/O activities. And modern network de-
vices have already enabled sophisticated interrupt coalesc-
ing from the hardware or firmware level [38]. Therefore,
the above interrupt moderation or substitution approaches
likely exert negative influence on the I/O sensitivity. A
better solution is to retain all interrupts yet eliminate the
incurred VM exits, as discussed below.

Deprivileging of interrupt delivery: ELI [19] and DID
[21] presented a novel software-based approach to elimi-
nate the interrupt-related VM exits without decreasing the
number of interrupts. Its main idea is to deprivilege virtual
interrupt delivery and completion by directly using physical
local APICs to serve guests, thus avoiding interventions
from the hypervisor. Specifically, a control bit in Virtual
Machine Control Structure (VMCS) called External Interrupt
Exiting (EIE) is cleared [15]. It means that when an interrupt
arrives at a CPU core in guest mode, the physical local APIC
directly delivers it to the currently running vCPU through
the guest IDT, instead of initiating a VM exit. In addition,
the physical EOI register of the local APIC is exposed to
the guest, making the virtual interrupt completion become
a non-virtualized operation without incurring a VM exit.

However, this kind of approach compromises some
important virtualization features and introduces potential
security issues. First, each vCPU is required to occupy a
dedicated core to exclusively manipulate the physical local
APIC, implying no support for the multiplexing of physical
CPU cores. Assuming that vCPU A and B from different
VMs run on the same core. If vCPU A is descheduled while
handling an interrupt without having written the EOI regis-
ter yet, the next running vCPU B may lose interruptibility
since the local APIC believes a certain interrupt is still in
service. Or, if vCPU A is descheduled with some pending

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

4

interrupts in the IRR, the local APIC may misdeliver these
interrupts to the next running vCPU B. Second, a vCPU
running on a core cannot simply migrate to other cores,
disabling workload balancing. As a vCPU’s interrupt state
is stored in the physical local APIC, the migration of a
vCPU among different cores may also cause the loss of in-
terruptibility or interrupt misdelivery. Finally, the exposure
of physical resources may provide malicious guests with
opportunities to exert influences over other guests, or worse,
the entire system.

Other types of VM Exits: Besides the interrupt-related
VM exits, there are also some prior works targeting other
types of exits. Ole Agesen et al. [39] proposed to identify
clusters of instructions that would normally cause multiple
exits and translate them together to exit only once for the
whole block. This kind of technique increases the efficiency
of running a virtual machine when the main exit reason
is in the guest code, but it cannot alleviate the overhead
for exits triggered by external interrupts [19]. ELVIS [20]
used dedicated cores in the host to poll multiple guests’
I/O with a fine-grained I/O scheduling, eliminating the VM
exits triggered by guests’ I/O requests. However, this kind
of polling saturates the dedicated core even when the I/O
load is at a very low level [40].

3.2 Hardware Era: Posted-Interrupt
The shortcomings of prior software solutions against
interrupt-related VM exits promoted the emergence of a
hardware-assisted technology called Posted-Interrupt (PI)
[15], which opens a new era for virtual interrupt delivery.
PI circumvents the limitation of traditional x86 architecture
with the help of the per-vCPU hardware-based virtual-
APIC (vAPIC) page. It can avoid interventions from the
hypervisor to provide non-exit interrupt delivery and no-
exit interrupt completion, without compromising any virtu-
alization benefit.

PI processing is enabled by setting the Process Posted
Interrupts (PPI) control bit in VMCS. It consists of five main
steps, as depicted in Fig. 2. When the hypervisor needs to
deliver a virtual interrupt to the currently running vCPU
A on the core H , it first posts the interrupt information in
the vCPU A’s PI descriptor (step 1). Then it sends an inter-
processor interrupt (IPI) with posted-interrupt notification vec-
tor to the core H (step 2). This special physical vector does
not cause a VM exit as it would normally due to an external
interrupt, but triggers the hardware to synchronize the
interrupt information from the vCPU A’s PI descriptor to
its vAPIC page (step 3). Then the vAPIC page automatically
delivers the pending interrupt indicated by the virtual IRR
to the currently running vCPUA (step 4), without a VM exit.
When the guest’s interrupt handler finishes, the EOI write
operation does not trigger a VM exit either, but prompts the
hardware to update the corresponding virtual registers in
the vCPU A’s vAPIC page (step 5).

3.3 Gap from an Optimal Event Path
Despite the usefulness of PI, it still has a distance to go
before reaching an optimal virtual I/O event path. The
remaining challenges gives us opportunities for further
enhancements.

Hypervisor

Virtual
Machine

virt ual CPU

PI Descriptor
physical

CPU

Interrupt Delivery

(3)
vAPIC Page

(1)
(2)

Interrupt Handler
(4)
IDT

(5) EOI

Fig. 2. Posted-Interrupt processing

Another major source of VM exits: PI is effective in
eliminating VM exits, but it can only act on half of the virtual
I/O event path, i.e., the interrupt path. As mentioned above,
guests’ I/O requests may also incur interventions from the
hypervisor, which are actually another major source of VM
exits, but often neglected.

TABLE 1
Breakdown of VM exit causes in the case of TCP Sending

VM Exit Causes
Interrupt

Delivery

Interrupt

Completion

Guest’s I/O

Request

w/o PI (Exits/s) 5575 30736 73310

w/o PI (%) 5.0% 27.7% 66.0%

with PI (Exits/s) 0 0 84403

with PI (%) 0.0% 0.0% 99.1%

Table 1 shows a breakdown of VM exit causes when a
tested VM with a paravirtual network device is sending 512-
byte TCP streams to the client server. In the configuration
without PI, the number of total VM exits is up to 111,155
per second, with 32.7% (5.0% + 27.7%) triggered by interrupt
delivery and completion, and 66.0% triggered by the guest’s
I/O requests. Interrupt delivery incurs less VM exits than
interrupt completion, as the destination vCPU is likely in
exit mode (considering the 73,310 VM exits caused by I/O
requests) when an interrupt needs to be injected. We can see
that PI eliminates the interrupt-related VM exits but could
do nothing for the large amount (more than half) of VM
exits triggered by the guest’s I/O requests. Moreover, the
elimination of interrupt-related VM exits brings a higher
throughput to the guest, leading to a 15% increase in the
number of guest’s I/O requests and the resulting exits, from
73,310 to 84,403 per second. As a result, the large amount
of VM exits triggered by guests’ I/O request becomes the
major challenge.

A solution to eliminate this type of VM exits is to poll
guests’ I/O requests in the host with dedicated cores, as
proposed in ELVIS [20], but this kind of polling saturates
the dedicated core even when the I/O load is at a very low
level [40]. It cannot adapt well to the workloads with varied
I/O traffic and likely leads to wasted CPU cycles due to
polling.

Degradation of I/O responsiveness: Benefiting from the
per-vCPU hardware-based interrupt controller (i.e., vAPIC
page), PI retains all virtualization features and inherently
supports the multiplexing of physical CPU cores. However,

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

5

Both PI and traditional interrupt injection (using software-
emulated interrupt controller) determine the destination
vCPU of a virtual interrupt according to the guest’s affinity
setting, without awareness of the vCPU scheduling status.
Considering the multiplexing of physical CPU cores, this
kind of semantic gap likely leads to a severe event pro-
cessing latency while delivering interrupts, thus degrading
guests’ I/O responsiveness [41], [42], [43], [44].

For example, when a virtual interrupt is generated, its
destination is set to vCPU A according to the guest’s affinity
setting. However, If physical CPU cores are multiplexed
(i.e., multiple vCPUs may share one core), the destination
vCPU A may have been descheduled while PI delivers
the virtual interrupt to it. Then, the delivered interrupt
cannot be processed until vCPU A is rescheduled. In this
situation, the scheduling delay of vCPU A will inevitably be
introduced into the guest’s event processing, causing excess
I/O latency.

4 ES2 DESIGN

Aiming at an optimal virtual I/O event path, we propose
ES2, an Efficient and reSponsive Event System for I/O vir-
tualization. We take the PI technology as a basis and make
efforts to resolve the remaining challenges. The design of
ES2 is based on the paravirtual I/O model, which achieves
a good balance between performance and flexibility.

4.1 Overview
The overall architecture of ES2 is shown in Fig. 3, including
three main components: Hybrid I/O Handling, Interrupt
Redirection and PI Processing. ES2 adopts the hybrid I/O
handling scheme to efficiently deliver the I/O requests from
the guest’s front-end driver. This hybrid scheme performs
proper switches between the existing exit-based notification
mode and a newly-added non-exit polling mode, reaping
the strengths of both notification and polling. We design
two kinds of mode switch algorithms: a generic algorithm
named perceptive mode switch and a specific algorithm named
optimistic mode switch. When the back-end device completes
an I/O operation and generates a virtual interrupt, ES2
intercepts this interrupt and performs intelligent interrupt
redirection before it is delivered through the PI processing.
Specifically, an information channel is established to bridge
the gap between the PI processing and the vCPU sched-
uler. According to the real-time vCPU scheduling status
acquired from this channel, ES2 optimizes the PI mechanism
by intelligently selecting the most appropriate vCPU (i.e.,
the currently running or first running vCPU) as the new
destination of virtual interrupts, thus reducing the guest’s
event processing delay as much as possible.

4.2 Hybrid I/O Handling
The main idea of the hybrid I/O handling is to combine
the existing exit-based notification mode and a newly-added
non-exit polling mode. We first analyze these two modes to
clarify our design motivation and then present the designed
mode switch algorithms: a generic perceptive mode switch
algorithm and a specific optimistic mode switch algorithm for
the query-reply type applications.

Hypervisor

Front-end Driver

Polling

mode switch:
Perceptive or Optimistic

Hybrid I/O Handling

Back-end Device Target Selection

vCPU Scheduler

physical CPU physical CPU physical CPU

PI processing

Physical
I/O Device

vCPU scheduling status

Interrupt Handler

info channel

Interrupt Redirect ion

virtual
interrupt

Notif ication

Virtual Machine

vAPIC vAPIC vAPIC

VM Exit

Fig. 3. Overall architecture of ES2

4.2.1 Notification vs. Polling

In paravirtual I/O, the virtual device is divided into a front-
end driver in the guest and a back-end device in the host,
which communicate with each other through shared virtual
queues. Each virtual queue corresponds to a handler in the
host, scheduled by a back-end I/O thread.

Notification mode: When the front-end issues an I/O
request, it first places the request (e.g., the data to be trans-
mitted) into a TX (Transmit) virtual queue and then notifies
the back-end with a VM exit. The hypervisor handles this
VM exit to wake up the corresponding I/O thread and the
latter further schedules the TX handler to process pending
I/O requests. This existing exit-based notification mode
works well when the egress I/O traffic is low. However,
as the I/O load increases, the incurred large amount of
VM exits may becomes the bottleneck. In our measurement,
there are more than 80,000 VM exits per second triggered by
I/O requests when a tested VM is sending TCP streams.

Polling mode: Using polling to replace notification is
a straightforward method to eliminate the VM exits trig-
gered by guest’s I/O requests. Specifically, the notification
mechanism of the front-end driver can be disabled and
the back-end I/O thread is responsible to actively poll the
TX virtual queue for I/O requests. Since the back-end I/O
thread cannot predict whether there are pending works in
the TX virtual queue, a typical implementation is to make
back-end I/O threads, running on a number of dedicated
cores, to continuously poll TX virtual queues until no new
work is detected for a period of time [20]. However, this
kind of side-core polling saturates the dedicated cores even
when the I/O load is at a very low level (e.g., simple ping
benchmark) [40]. It likely causes wasted CPU cycles and
cannot adapt well to the workloads with varied I/O traffic.

Hybrid scheme: To efficiently deliver guests’ I/O re-
quests, ES2 takes inspiration from the Linux NAPI mecha-
nism [30] and adopts a hybrid scheme to reap the strengths
of both notification and polling, i.e., not only throttling the
number of VM exits due to notification but also reducing
the wasted CPU cycles due to polling. The key of this
hybrid I/O handling is the proper switching between the
existing notification mode the newly-added polling mode.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

6

Algorithm 1 Perceptive mode switch algorithm
1: procedure TX HANDLER
2: notification: . Label
3: sleeping in notification mode
4: waked up by an I/O request
5: schedule: . Label
6: waiting to be scheduled
7: scheduled by the back-end I/O thread
8: if notify enabled then
9: disable notify . mode switch

10: end if
11: load← 0
12: while the TX virtual queue is not empty do
13: retrieving one I/O request from this queue
14: load← load +1
15: if load >= quota then
16: goto schedule . Wait for next turn
17: end if
18: end while
19: enable notify . mode switch
20: goto notification
21: end procedure

We design two kinds of algorithms for it, named percep-
tive mode switch and optimistic mode switch, respectively.
Our evaluation demonstrates that the proposed hybrid I/O
handling only has a small performance gap from the pure
side-core polling.

4.2.2 Perceptive Mode Switch
This is a generic mode switch algorithm that determines the
appropriate mode to use according to the real-time I/O load
of the TX (Transmit) virtual queue. In the case of low I/O
load, the notification mode is a better choice because a small
number of VM exits are tolerable and preferable, compared
to the wasted CPU cycles due to polling. However, if the
TX virtual queue experiences high load of I/O activities, the
polling mode is more appropriate as it can achieve better
performance by avoiding VM exits. Since this perceptive
algorithm performs prompt mode switches according to the
real-time I/O load, it can adapt well to the workloads with
varied I/O traffic.

The perceptive mode switch algorithm leverages a quota
parameter to sensitively control whether the TX handler
runs in the polling mode or not, as shown in Algorithm
1. At first, the handler for the TX virtual queue sleeps in
the notification mode. When the handler is waked up by the
guest’s I/O request and gets scheduled, it directly disables
the guest’s notification mechanism for this virtual queue
and enters the polling mode. ES2 monitors the real-time load
when the handler polls I/O requests from this virtual queue.
If the load reaches a predefined quota before the queue is
empty, it is evident that the guest is experiencing a high load
of I/O activities, so the handler remains in the polling mode.
At this time, this handler will be descheduled and waits
for its next turn, which maintains fairness among handlers
and gives this virtual queue an opportunity to accumulate
requests. If the guest does not have enough built-up I/O
requests to fill the quota (i.e., load < quota when the queue is
empty), it means the current I/O load is at a tolerable low

Algorithm 2 Optimistic mode switch algorithm
1: procedure RX HANDLER
2: if a new packet in RX-queue is captured then
3: disable notify(TX-queue) . mode switch
4: TX-queue.is poll← TRUE
5: TX-queue.poll count← 0
6: add the handler for TX-queue into scheduling list
7: end if
8: end procedure
9:

10: procedure TX HANDLER
11: if TX-queue.is poll then
12: polling I/O requests from TX-queue
13: TX-queue.poll count← TX-queue.poll count + 1
14: if TX-queue.poll count > max poll count then
15: TX-queue.is poll← FALSE
16: enable notify . mode switch
17: return
18: end if
19: waiting to be scheduled again.
20: end if
21: end procedure

level. Then, the handler re-enables the guest’s notification
mechanism and goes back to the notification mode. We can
see that once the real-time I/O load varies, this algorithm
can perceive that and promptly switch the mode.

4.2.3 Optimistic Mode Switch
Although the perceptive mode switch algorithm is a generic
algorithm that can be applied to all applications, it actu-
ally provides a relatively low performance enhancement
for the widely-deployed query-reply type applications (e.g.,
database or web server), as shown in our evaluation (section
6.3.2). Additionally, an observation for the query-reply type
application is that almost all the I/O requests are issued
after it receives a new packet, which could be a packet for
query or new connection. In other words, for the query-
reply type applications, the initiation of the guest’s I/O re-
quest (i.e., a packet for reply or connection establishment) is
predictable to some extent. The above two reasons motivates
us to design an optimized mode switch algorithm named
optimistic mode switch for the query-reply type applications.

The main idea of the new mode switch algorithm is to
optimistically poll I/O requests from the TX virtual queue
a certain number of times once a new ingress packet to
the guest is captured. Compared to the generic perceptive
mode switch algorithm, this optimistic algorithm may incur
a little overhead because of the possible ineffective polling
operations, but it is more effective in reducing VM exits and
provides a fairly better I/O performance for the query-reply
type applications. This has been proved by our experiments
in terms of both VM exit rate and network throughput (see
section 6 for detail).

Algorithm 2 shows the detailed algorithm of the opti-
mistic mode switch. Once a new packet in the RX (Receive)
virtual queue is captured, the guest’s notification mecha-
nism for its TX virtual queue is disabled. The polling flag
(is poll) for the TX virtual queue is set to TRUE and the
corresponding handler is added to the scheduling list of the

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

7

back-end I/O thread, with the poll count value reset to zero.
When the handler for the TX virtual queue is scheduled and
finds that the polling flag is poll has been set, it polls I/O
requests for the virtual queue and increases the poll count
by one. If poll count is bigger than a predefined threshold,
the handler re-enables the guest’s notification mechanism
and goes back to the notification mode. If not, the handler
remains in the polling mode and it will be descheduled to
wait for its next turn.

4.3 Intelligent Interrupt Redirection

As described before, PI may suffer a severe latency from
the vCPU scheduling while delivering interrupts, causing
excess I/O latency in the guest. To enhance the guest’s
I/O responsiveness, ES2 optimizes the PI mechanism by
a strategy named intelligent interrupt redirection, which is
based on the following observation. The multiplexing of
physical CPU cores typically occurs in the environment of
symmetric multiprocessor (SMP [45]) VMs, and it is likely
that an SMP VM has a vCPU that is currently running or will
soon start to run again. We can keep searching for this kind
of vCPU and redirecting virtual interrupts to it to reduce the
guest’s event processing delay.

There have been some studies (e.g., vbalance [42] and
hbalance [44]) that adopt the interrupt redirection strategy
to redirect interrupts from preempted vCPUs to running
ones in a balanced manner, i.e., with the concentration on in-
terrupt load balancing. In contrast, the goal of the intelligent
interrupt redirection in ES2 is to select the most appropriate
vCPU as the new destination of virtual interrupts to reduce
the guest’s event processing delay as much as possible.

As shown in Fig. 3, an information channel is estab-
lished between the vCPU scheduler and the PI processing
to acquire the real-time scheduling status of all vCPUs.
The status of a vCPU is defined as online if it is currently
running on a core, and defined as offline if not. ES2 maintains
online/offline vCPU lists for all the VMs. Each time the
scheduler switches the running vCPU, ES2 gets notified and
updates the related lists.

Destination vCPU selection: If there are multiple vCPU
candidates in the online list when an interrupt arrives,
all of them can immediately receive interrupts delivered
by PI without any latency. In this situation, ES2 selects
the destination vCPU in consideration of both workload
balancing and cache affinity. ES2 records the number of
processed interrupts for each vCPU, and selects a vCPU
with the lightest workload among all the candidates as the
destination. Once a vCPU is selected to process a virtual
interrupt, ES2 keeps redirecting the subsequent interrupts
to it until it is descheduled by the vCPU scheduler, thus
achieving better cache affinity.

Although an SMP VM has multiple vCPUs, it is still
likely that no vCPU is online when an interrupt arrives.
In this situation, ES2 selects an offline vCPU that will be
the first one to regain its online status, i.e. the first run-
ning vCPU. An approximate prediction is leveraged here to
quickly make the selection. It takes the philosophy that the
longer the time period a vCPU remains offline, the higher
the probability it has to become online again. The offline
vCPU list is sorted to indicate the descheduling sequence

of all vCPUs. Each time a certain vCPU is descheduled,
it is removed from the online list and added to the tail of
the offline list. In this manner, ES2 makes its prediction by
simply returning the vCPU at the head of the offline list (i.e.,
the vCPU with the longest offline time) as the destination.

Effectiveness discussion: The interrupt redirection has
no effect for the target VM with only one vCPU. However,
for this kind of uniprocessor (UP) VM, a typical configura-
tion is to pin the only vCPU to a dedicated core. Since the
vCPU is almost always online, it can immediately receive
interrupts delivered by PI without any latency. The design
goal of the interrupt redirection is to serve the SMP VMs.
According to the reported statistics [46], when there are two
four-vCPU VMs in a four-core host, the probability of vCPU-
stacking (i.e., at least two sibling vCPUs from the same
VM run on the same core) is more than 40%. Once vCPU-
stacking happens, it means at least two sibling vCPUs have
completely different online time, which can be leveraged
by the interrupt redirection scheme to select an appropriate
vCPU destination. Even if we pin the sibling vCPUs of an
SMP VM to different CPU cores (i.e. only sharing a core
with vCPUs from other VMs) to avoid vCPU-stacking, as
each physical core owns an independent scheduling queue,
it is very likely that those sibling vCPUs have differences
in online/offline time. Therefore, the intelligent interrupt
redirection still has the opportunity to optimize the event
delivery.

5 ES2 IMPLEMENTATION

The design of ES2 can be implemented on different hypervi-
sors. In this section, we present the detailed implementation
based on the KVM [33] hypervisor and its paravirtual I/O
standard named virtio [9]. The involved line of codes (LOC)
for the ES2 prototype is about 600, involving the modifica-
tions to three paravirtual I/O related files (vhost.h, vhost.c
and net.c) and three KVM related files (i.e., kvm host.h, kvm
main.c and irq comm.c).

5.1 Hybrid I/O Handling
The virtio standard in KVM offers a user-space implemen-
tation and an in-kernel implementation for the back-end
device [47]. We validated the hybrid I/O handling scheme
on the in-kernel back-end implementation for paravirtual
network device, called vhost-net, as it performs significantly
better than the user-space alternative [20], [47].

The virtio standard provides flags and avail event fields
for the back-end device to temporarily suppress notifica-
tions from the guest when the host is servicing a particular
virtqueue [48]. By manipulating these fields, ES2 can per-
manently disable the notification mechanism in the polling
mode and thus avoid the VM exits triggered by the guest’s
I/O requests.

Combining of I/O threads: The shared buffer between
the front-end driver and back-end vhost-net consists of
two virtqueues: one for packet transmission (TX) and the
other for packet reception (RX). KVM allocates a kernel
I/O thread for each vhost-net device to schedule its TX
handler (for the TX virtqueue) and RX handler (for the RX
virtqueue). In ES2, multiple back-end I/O threads are com-
bined into one joint thread for the following two reasons.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

8

First, the fairness among different vhost-net devices can be
maintained well in one thread, instead of relying on the
hypervisor scheduler. Second, the context switches among
different back-end I/O threads can be avoided.

Note that reducing the number of I/O threads may
decrease the maximum CPU time (i.e., the number of CPU
cores) that these I/O threads can use. To address this issue,
we restrict the number of back-end I/O threads that are
combined into one, denoted by combining level, with the
goal to avoid the lack of computing resources. If the number
of back-end I/O threads (e.g., 6) is bigger than the value
of combining level (e.g., 4), they are combined to multiple
joint I/O threads to be able to use more CPU resources.
The default combining level is set to 4 and in our evaluation
with high I/O load, one CPU core is sufficient to run one
joint thread (i.e., 4 combined back-end I/O threads). Ad-
ditionally, we made the combining level value configurable
through a module parameter to meet different requirements.
Users can set this parameter and pin the joint threads to
different cores to control the use of CPU resources.

5.2 Perceptive Mode Switch Implementation
When multiple TX handlers in the joint I/O thread reach
the quota threshold, the round-robin scheduling gives those
TX virtqueues an opportunity to accumulate I/O requests.
However, if a TX handler reaches the quota threshold and it
is the only handler in the scheduling list, the corresponding
TX virtqueue has no time to accumulate the guest’s I/O
requests and possibly returns back to the notification mode
at its next turn. In this situation, ES2 lets the I/O thread
perform an interruptable sleep for 10µs (an empirical value)
before scheduling the only handler. This optimization in-
creases the probability that the only TX handler stays in the
polling mode and further reduces the VM exits incurred by
I/O requests. Since the sleeping of the joint I/O thread is
interruptable, once a new handler, either a TX handler or a
RX handler, is added to the scheduling list, the joint thread
is waked up immediately to minimize I/O latency.

The quota parameter is the key of the perceptive mode
switch algorithm, but how to determine an appropriate
value for it is not simple. A value too high may render in-
effective polling while a value too low may lead to frequent
switches among different handlers. The NAPI mechanism
has a similar parameter called weight, and it is usually
determined by empirical methods. Analogously, we used
experiments to select the proper quota value, as presented in
our previous work [1]. we recommend a quota value of no
more than 4 for TCP streams and a quota value of no more
than 16 for UDP streams. Also, to facilitate modifications of
the quota value, we added a module parameter named poll
quota, which allows the quota value to be set dynamically
when loading the vhost-net module.

5.3 Optimistic Mode Switch Implementation
Once a RX handler receives a new packet, the corresponding
TX handler is marked as a polling handler and added into
the scheduling list of the joint I/O thread. The regular
handlers (i.e., the TX/RX handlers triggered by VM exits)
are scheduled only if there is new pending work, while the
polling handlers are scheduled because we optimistically

believe there may be new work in the TX virtqueues. The
max polling time (i.e., poll count) is set to 1000. In order to
reduce the wasted CPU cycles due to possible ineffective
polling operations, if all the active (i.e., needed to sched-
uled) handlers are polling handlers, after they have been
scheduled for once, ES2 lets the joint I/O thread perform
an interruptable sleep for 10µs (an empirical value) before
scheduling them again. Similarly, once a new handler is
added to the scheduling list, the joint thread is waked up
immediately to minimize I/O latency.

A challenge here is that the sleeping scheme needs to be
disabled if there is at least one regular handler is active. To
this end, ES2 introduces a new polling list into the joint
I/O thread, besides the existing scheduling list. At first,
all the active handlers are added to the scheduling list.
When a polling handler is scheduled to run and needs to
be rescheduled, it is added to the polling list. Once a regular
handler is identified and scheduled, all the handlers in the
polling list are moved to the tail of the scheduling list. At
some time, if the scheduling list is empty while the polling
list is not empty, it means that all the active handlers are
polling handlers and they have been scheduled for once,
so the joint I/O thread sleeps for 10µs. After that, all the
polling handlers are moved from the polling list to the
scheduling list and the loop continues.

5.4 Tracing vCPU Scheduling Status

In KVM, a vCPU is implemented as a normal thread and
scheduled by the Completely Fair Scheduler (CFS) [49]. ES2
monitors the scheduling status of all vCPUs. If a vCPU
thread is currently running, it is put into the online vCPU
list of the given VM. When an online vCPU thread is
descheduled, it is removed from the online list and added
to the offline list. The accesses to these per-VM lists must be
carefully synchronized, because multiple sibling vCPUs on
different cores may change their scheduling status concur-
rently.

From the perspective of CFS, there is no difference
between a vCPU thread and an ordinary thread, so we
cannot trace the vCPU scheduling status by ascertaining
whether the scheduled or descheduled thread is a vCPU
or not. Instead, we turn to the two preemption notifiers
provided by KVM, called kvm sched in and kvm sched out
respectively. The former is invoked when a vCPU thread is
about to be scheduled, and the latter is invoked immediately
after a vCPU thread is descheduled. By leveraging these two
notifiers, ES2 can collect and update the vCPU scheduling
status for each VM.

5.5 Interrupt Redirection

Guest devices in KVM are implemented as standard PCI
devices with the Message Signaled Interrupt (MSI) archi-
tecture or its extension MSI-X [50]. The destination vCPU
ID of a virtual interrupt is specified in the MSI/MSI-X
address, determined by the guest’s interrupt affinity setting.
ES2 does not reprograms the interrupt configuration at
the sources, as this way is non-atomic, often complex and
dependent on interrupt source characteristics [14]. Instead,
ES2 intercepts MSI/MSI-X type virtual interrupts in a key

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

9

function called kvm arch set irq inatomic, and modifies the
destination vCPU to the selected candidate.

In Linux, a device interrupt can be delivered by either the
lowest priority delivery mode or the fixed delivery mode
[36], depending on the selection of the local APIC driver.
An interrupt using the lowest priority delivery mode can be
recognized by all CPU cores, so there is no problem with
the validity of the interrupt redirection. But this may not be
true for the fixed delivery mode. Fortunately, the number
of vCPUs in a VM is usually no more than eight, in which
case the guest OS (Linux) typically selects apic default or
apic flat as the local APIC driver and adopts the lowest
priority delivery mode. For the VM with more than eight
vCPUs, further guest configuration (e.g., manually setting
the corresponding interrupt affinity to multiple cores in the
guest) or guest OS modification is necessary to enable the
interrupt redirection.

In addition, it is important to identify device interrupts
here, because in an SMP VM, not all interrupts are allowed
to be redirected. Some kinds of interrupts (e.g., timer inter-
rupt) are generated for specific vCPUs and redirecting them
to other vCPUs may cause the guest OS to crash. We notice
that Linux adopts a strict interrupt vector allocation strat-
egy. By taking advantage of the vector range distribution,
ES2 can distinguish device interrupts from the others and
perform the correct redirection.

6 EVALUATION

In this section, we evaluate the effectiveness and scalability
of the ES2 implementation.

6.1 Experimental Setup
We established an experiment testbed with one tested server
and one client server that were connected back-to-back via
Intel R© XL710 40GbE NICs. Both servers were equipped with
an 8-core Intel R© Xeon R© E5-4610 v2 CPU (hyper-threading
disabled) and 32GB RAM. We ran Ubuntu with longterm
Linux kernel 4.4 on both servers and all the VMs. ES2 was
installed on the tested server with qemu-kvm 2.0 and the
client server acted as a traffic generator. Each VM in the
tested server was provisioned with one paravirtual network
device using the vhost-net kernel module. The Maximum
Transmission Unit (MTU) was set to its default size of 1500
bytes.

Four configurations: To evaluate all aspects of ES2, the
following configurations are compared:

• PI: Vanilla Linux kernel 4.4 (i.e., KVM 4.4) with PI
enabled.

• PI+H: adding the Hybrid I/O Handling scheme
based on the PI configuration. Specifically, PI+H(P)
denotes the use of the perceptive mode switch algo-
rithm and PI+H(O) denotes the use of the optimistic
mode switch algorithm.

• PI+R: adding the Intelligent Interrupt Redirection
scheme based on the PI configuration.

• PI+H+R: adding both of the above two schemes on
the basis of the PI configuration, i.e., the full ES2.

In recent Linux kernel, PI is enabled by default if the
CPU supports the APIC virtualization feature, so we take

”PI enabled” as the baseline configuration. We do not
directly compare ES2 with previous software approaches,
such as ELI or DID, because the baseline PI configuration
has equivalent effect on eliminating VM exits and does not
compromise any virtualization benefit.

Workload: The performance advantage of the Hybrid
I/O Handling scheme depends on the workload. Under
heavy workload, it outperforms the PI baseline (i.e., the
exit-based notification scheme) due to the large reduction of
VM exits. However, under light workload with only a few
VM exits, it performs similarly compared to the PI baseline.
Therefore, in our evaluation, ES2 is mainly validated using
heavy workload: for both micro and macro benchmarks, the
client traffic generator continuously sends packets or makes
requests to the tested server. The detailed characteristics
of the input traffic will be described in terms of each
experiment. For real-life traffic that lies between the case of
light workload and the tested case of heavy workload, the
performance advantage of the Hybrid I/O Handling scheme
also lies between them.

6.2 Reduction of VM Exit Rate

To quantify the ability of ES2 to eliminate VM exits, we col-
lected the VM exit statistics of a running VM by leveraging
the perf-kvm utility [51]. The tested VM was configured with
1 vCPU and 1GB RAM.

Based on experimental results, we have concluded three
most-frequent exit causes involved in the virtual I/O event
delivery: (1) External Interrupt: arrival of an external inter-
rupt; (2) APIC Access: attempt from the guest to access the
local APIC, such as the EOI write operation; (3) I/O Instruc-
tion: attempt from the guest to issue an I/O request. An
External Interrupt exit may be caused by virtual interrupt
delivery (which issues an IPI) or other kinds of external
interrupts (e.g., timer interrupt). By analyzing the interrupt
vector, we classify the IPI-triggered exits into the category
named Interrupt Delivery. Similarly, an APIC Access exit may
be caused by accessing the EOI register or other kinds of
APIC registers. By analyzing the access address, we classify
the exits triggered by accessing 00B0H (corresponding to
the EOI register [36]) into the category named EOI Write.
In the evaluation, we focus on these three VM exit causes:
Interrupt Delivery, EOI Write and I/O Instruction, which are
directly related to the virtual I/O event path.

We first evaluated the sending of TCP and UDP streams.
The Netperf benchmark [52] was configured in the tested
VM to send 512-byte TCP or UDP packets to the client
server. The perceptive mode switch algorithm was adopted
here in the hybrid I/O handling scheme. As shown in Fig.
4a, while the tested VM is sending TCP streams, the total
number of VM exits per second in the configuration without
PI is nearly 110K, with a 26.68% Exit Handling Time (EHT),
which is the percentage of CPU time used to handle these
VM exits. About 70K VM exits are related to I/O Instruc-
tion due to the continuous sending of TCP packets. The
Interrupt Delivery exits are mainly triggered by the virtual
interrupts for the ingress ACK packets. Note that Interrupt
Delivery incurs obviously less VM exits than EOI Write. The
reason is that when an interrupt needs to be injected, the
destination vCPU is likely in exit mode due to the large

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

10

0 20 40 60 80 100 120 140
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

EHT=26.68%

EHT=26.76%

EHT=0.04%

Interrupt Delivery EOI Write I/O Instruction

(a) Sending TCP streams

0 20 40 60 80 100 120 140
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

EHT=29.63%

EHT=28.99%

EHT=0.01%

Interrupt Delivery EOI Write I/O Instruction

(b) Sending UDP streams

Fig. 4. Breakdown of three related VM exit causes for a VM sending 512-byte TCP or UDP streams under configurations: w/o PI, PI and PI+H.

0 5 10 15 20 25 30 35
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

EHT=5.48%

EHT=3.75%

EHT=2.42%

Interrupt Delivery EOI Write I/O Instruction

(a) Receiving TCP streams

0 1 2 3 4 5 6 7
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

EHT=1.33%

EHT=0.03%

EHT=0.02%

Interrupt Delivery EOI Write I/O Instruction

(b) Receiving UDP streams

Fig. 5. Breakdown of three related VM exit causes for a VM receiving 512-byte TCP or UDP streams under configurations: w/o PI, PI and PI+H.

0 10 20 30 40 50 60 70 80
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

PI+H(O)

EHT=19.22%

EHT=16.59%

EHT=12.31%

EHT=0.01%

Interrupt Delivery EOI Write I/O Instruction

(a) Memcached

0 10 20 30 40 50 60 70
Number of VM exits per second (K)

w/o PI

PI

PI+H(P)

PI+H(O)

EHT=15.43%

EHT=11.89%

EHT=7.23%

EHT=0.01%

Interrupt Delivery EOI Write I/O Instruction

(b) Nginx

Fig. 6. Breakdown of three related VM exit causes for a VM running the query-reply type application under configurations: w/o PI, PI and PI+H.

amount of I/O Instruction exits. PI successfully eliminates
the interrupt-related VM exits, which means more time can
be used to send TCP packets, bringing a small increase
in the amount of I/O Instruction exits. After the hybrid
I/O handling scheme is added, the I/O Instruction exits are
effectively throttled with a remaining number of 1K and the
EHT is reduced to 0.04%. In the UDP case, as shown in Fig.
4b, the unidirectional high I/O load brings a nearly 100K
I/O Instruction exits, with only few interrupt-related VM
exits. The perceptive mode switch algorithm in the hybrid
I/O handling scheme keeps the number of remaining I/O
Instruction exits under 100 per second and reduces the EHT
from 29.63% to 0.01%.

Fig. 5 shows the experiment results of the receiving of
TCP and UDP streams. Still, the perceptive mode switch
algorithm was adopted in the hybrid I/O handling scheme.
While the tested VM is receiving TCP streams, each of the
three causes contributes about a third of the VM exits in the
w/o PI configuration. The Interrupt Delivery and EOI Write
exits are related to the ingress TCP packets, and the I/O

Instruction exits are triggered by the egress ACK packets. PI
eliminates the former two kinds of VM exits while the I/O
Instruction exits cannot be greatly reduced by the percep-
tive mode switch algorithm because ACK packets are sent
only at a certain interval. In the UDP case, almost no I/O
instruction exit is triggered because of the unidirectionality
of UDP traffic. The PI and PI+H(P) configuration keep the
EHT below 0.03%.

In order to evaluate the effectiveness of the optimistic
mode switch algorithm for the query-reply type applica-
tion, Memcached and Nginx were configured to run in the
tested VM to handle concurrent requests from the client
server. Memcached [53] is a distributed memory caching
system that speeds up dynamic database-driven websites by
caching data and objects in RAM. Nginx [54] is a popular
high-performance web server used by a large number of
top websites. The breakdown of the three types of VM exits
are shown in Fig. 6. We can see that Memcached has more
than 40K I/O Instruction exits and Nginx has more than
20K I/O Instruction exits in the w/o PI configuration. The

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

11

1 VM 2 VM 3 VM 4 VM
0

2

4

6

8

10

12

14

16
Th

ro
ug

hp
ut

(G
bp

s)

42%

39%

32%

25%

47%

43%

38%

28%
PI
PI+H(P)

PI+R
PI+H(P)+R

(a) Sending TCP streams

1 VM 2 VM 3 VM 4 VM
0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
(G

bp
s)

63%

60%

61%

58%

61%

64%

63%

57%PI
PI+H(P)

PI+R
PI+H(P)+R

(b) Receiving TCP streams

Fig. 7. Throughput of Netperf sending or receiving TCP streams in multiple tested VMs while four VMs are time-sharing four physical cores

interrupt-related VM exits can be successfully eliminated
by the PI, bringing a small increase in the amount of the
I/O Instruction exits. The perceptive mode switch algorithm
(i.e., the PI+H(P) configuration) can reduce a number of I/O
Instruction exits in the case of concurrent queries, with the
EHT down to 12.31% for Memcached and 7.23% for Nginx.
By contrast, the optimistic mode switch algorithm (i.e., the
PI+H(O) configuration) is much more effective in reducing
the I/O Instruction exits. The remaining I/O Instruction exits
is kept under 50 per second, with the EHT down to 0.01%
for both Memcached and Nginx.

As shown by the experimental results, the proposed
hybrid I/O handling has already eliminated nearly all I/O
instruction exits under high I/O load. It means that there
is only little room for the pure side-core polling (which
can entirely eliminate I/O instruction exits) to achieve addi-
tional performance enhancement. In other words, the hybrid
I/O handling has a small performance gap from the pure
polling. When I/O activities are not intensive (i.e., only
a small number of triggered VM exits), the hybrid I/O
handling scheme performs similarly compared to the exit-
based notification scheme. Its main advantage is to save
CPU cycles in that situation. In contrast, the pure polling
uses up the dedicated cores even if the VMs are experiencing
the simple ping benchmark.

6.3 Throughput Enhancement

This section evaluates the throughput enhancement of ES2
using both micro and macro benchmarks. To simulate the
multiplexing of physical CPU cores, four VMs, each with
four vCPUs and 1GB RAM, were created in the tested server
to time-share four physical cores. We pinned the four sibling
vCPUs of the same VM to different physical cores to avoid
vCPU-stacking [46]. All the back-end I/O threads for the
paravirtual network devices ran on a separated core, except
for the case of Netperf TCP receiving, where two I/O cores
were used to avoid the resource bottleneck. We also ran
lowest-priority CPU burn scripts in each VM to trigger the
vCPU scheduling in the hypervisor.

In order to validate the scalability of ES2, we varied the
number of the tested VMs with simultaneous I/O activities
from one to four. For example, when there are two tested
VMs, the client server generates simultaneous I/O traffic to

these two tested VMs, and the other two VMs work as the
background VMs.

6.3.1 Micro Benchmark Testing
We configured Netperf [55] benchmark in multiple tested
VMs to send or receive 512-byte TCP streams simultane-
ously to or from the client server. For each tested VM, four
concurrent Netperf threads were used to fully load its four
vCPUs. The perceptive mode switch algorithm was adopted
in the hybrid I/O handling scheme. The experiment results
are shown in Fig. 7.

Netperf TCP sending: When there is only one VM
sending TCP streams, as shown in Fig. 7a, the hybrid I/O
handling scheme (i.e., PI+H(P) configuration) improves the
network throughput by 42% over the PI baseline, due to the
effective reduction of I/O Instruction exits (see Fig. 4a). The
intelligent interrupt redirection (i.e., PI+R configuration)
only provides a slight throughput increase because only a
few virtual interrupts signaling ingress ACK packets can be
redirected. Finally, the full ES2 (i.e., PI+H(P)+R configura-
tion) achieves a 47% throughput enhancement.

As the number of tested VMs increases from one to four,
we can see that the throughput improvement brought by
the hybrid I/O handling scheme gradually decreases from
42% to 25%, with the following reason. Since all the back-
end I/O threads ran on the same core, when there are four
VMs being tested in the PI configuration, the round-robin
scheduling (performed by CFS) of the four I/O threads gives
each VM a period of time to accumulate TX packets in the
shared memory. It means the TX handler can process more
packets in one shot and the number of I/O Instruction exits
is reduced. In our measurement, the average number of I/O
Instruction exits for each tested VM drops from 23,000 to
13,000 per second in the PI configuration when the number
of tested VMs increases from 1 to 4. As fewer I/O Instruction
exits are triggered in each tested VM, the benefit of the
hybrid I/O handling scheme is cut down.

Netperf TCP receiving: As shown in Fig. 7b, the hybrid
I/O handling scheme does not show obvious effect, as only
a small number of I/O instruction exits are triggered by
the sending of ACK packets and the sending is at a low
rate. Notably, the intelligent interrupt redirection brings a
significant increase on the network throughput, up to 63%
compared to the PI configuration when there is only one

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

12

1 VM 2 VM 3 VM 4 VM
0

30

60

90

120

150

180

210

240
Tr

an
sa

ct
io

ns
pe

rs
ec

on
d

(K
)

35%

38%

27%

25%

45%

44%

40%

42%

87%

90%

79%

75%PI
PI+H(P)
PI+H(O)

PI+R
PI+H(O)+R

(a) Memcached

1 VM 2 VM 3 VM 4 VM
0

5

10

15

20

25

30

35

40

R
eq

ue
st

s
pe

rs
ec

on
d

(K
)

30%

29%

20%

18%

32%

34%

34%

32%

58%

61%

55%

53%PI
PI+H(P)
PI+H(O)

PI+R
PI+H(O)+R

(b) Nginx

Fig. 8. Throughput of two kinds of macro workloads in multiple tested VMs while four VMs are time-sharing four physical cores

tested VM. This is because the virtual interrupts signaling
ingress TCP packets are redirected to the most appropriate
vCPU, thus reducing the tested VM’s event processing de-
lay. As the number of tested VMs increases from one to four,
the throughput improvement brought by the intelligent
interrupt redirection keeps about 60%. It proves the good
scalability of the intelligent interrupt redirection.

6.3.2 Macro Benchmark Testing
We evaluated the throughput of two kinds of macro work-
loads: Memcached [53] and Nginx [54], both of which are
query-reply type applications. The tested VMs were config-
ured as either Memcached servers or Nginx servers. The
perceptive mode switch algorithm and the optimistic mode
switch algorithm were adopted respectively in the hybrid
I/O handling scheme for comparison. The experiment re-
sults are shown in Fig. 8.

Memcached: We configured Memaslap [56], a load gen-
eration and benchmark tool for Memcached, to run on
the client server, making 256 concurrent requests from 16
threads with a get/set ratio of 9:1. For each tested VM,
one Memaslap process was launched. It is evident from
the results shown in Fig. 8a that the optimistic mode
switch algorithm (i.e., PI+H(O) configuration) behaves ob-
viously better than the perceptive mode switch algorithm
(i.e., PI+H(P) configuration). When there is only one tested
VM, the PI+H(P) configuration only gives a throughput
enhancement of 12% while the PI+H(O) configuration gives
a throughput enhancement of 35%. When the number of
tested VMs becomes four, the PI+H(P) configuration only
shows a very slight throughput increase and while the
PI+H(O) configuration still improves the throughput by
25%. These comparison results prove that the optimistic
mode switch algorithm is more effective in reducing VM
exits and brings a better I/O performance for the query-
reply type applications.

We can also see that the increase in the number of
tested VMs leads to a drop of the throughput improvement
brought by these two mode switch algorithms. The reason
is the same as that for the micro benchmark testing. When
there are multiple VMs being tested in the PI configuration,
the round-robin scheduling (performed by CFS) of the mul-
tiple I/O threads (running on the same I/O core) gives each
VM a period of time to accumulate TX packets in the shared

memory. As a result, the number of I/O Instruction exits is
reduced and the benefit of the hybrid I/O handling scheme
is cut down.

The intelligent interrupt redirection scheme (i.e., PI+R
configuration) brings a stable more than 1.4x transactions
per second over the PI baseline when the the number of
tested VMs increases from one to four. This is because the
virtual interrupts can be processed much more quickly. And
this result shows the good scalability of the intelligent inter-
rupt redirection scheme. The combination of the hybrid I/O
handling scheme and the intelligent interrupt redirection
scheme (i.e., PI+H(O)+R configuration) finally improves the
throughput by 75%-90%.

Nginx: In each tested VM, four Nginx worker processes
were launched on the four vCPUs to listen on different
ports. We configured ApacheBench [57], a program for mea-
suring the performance of HTTP web servers, to run on the
client server, repeatedly requesting the default static page
provided by Nginx. For each tested VM, four ApacheBench
processes were launched to load different ports. As shown
in Fig. 8b, the experiments results are similar with that of the
Memcached testing. The optimistic mode switch algorithm
is more effective in reducing VM exits and gives a higher
requests per second (RPS) value, compared to the perceptive
mode switch algorithm.

When there is only one tested VM, the PI+H(O) con-
figuration and PI+R configuration provide 30% and 32%
throughput improvement over the PI baseline respectively.
The full ES2 finally improves the throughput by 58%. As
the number of tested VMs increases from one to four,
the throughput improvement brought by the hybrid I/O
handling scheme drops to 18% and the final throughput
enhancement provided by the full ES2 is 53%.

6.4 Responsiveness Improvement
This section evaluates the responsiveness improvement of
ES2. The VM setting is the same as the throughput eval-
uation. Still, four VMs were created to time-share four
physical cores, but there is only one tested VM. As the
hybrid I/O handling scheme has no obvious effect on the
responsiveness, here we only compare two configuration:
PI and PI+R.

Round trip time: We used Ping with one second interval
to measure the round trip time (RTT) from the client server

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

13

0 5 10 15 20 25
RTT delay (ms)

0
10
20
30
40
50
60
70
80
90

100
Pe

rc
en

ta
ge

(%
)

PI PI+R

Fig. 9. Round trip time (RTT) evaluation with Ping

0 5 10 15 20 25 30
Served time (ms)

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
(%

)

PI PI+R

Fig. 10. HTTP served time evaluation with ApacheBench

to the tested VM. Fig. 9 shows the testing results of RTT
delay. It can be seen that in the PI configuration, the RTT
largely varies: half of the ping requests have a RTT above
5ms, with 24ms peak reached. After adding the intelligent
interrupt redirection, nearly 70% ping requests have a RTT
under 0.2ms and more than 90% ping requests have a
RTT under 5ms. This proves that the original PI suffers
from the degradation of I/O responsiveness. The intelligent
interrupt redirection makes sure that the virtual interrupt
can be delivered to the most appropriate vCPU and largely
mitigates this problem.

HTTP served time: The tested VM was set up as
an Apache server. The Apache HTTP Server [58] is the
world’s most used web server software. We configured
one ApacheBench process in the client server to repeatedly
request a small static page with a concurrency of 16. As
shown in Fig. 10, no more than 30% HTTP requests can
be served within 15ms in the PI configuration while nearly
80% HTTP requests can be served within 15ms in the PI+R
configuration. A phenomenon is that in the PI configuration,
about 90%-30%=60% HTTP requests are served with the
same time: 16ms. This is because there is only one vCPU
in the tested VM that can process interrupts and this vCPU
shares the physical core with three other vCPUs from dif-
ferent VMs. If this vCPU is descheduled when an HTTP
request arrives, this request can not be processed until it is
rescheduled. Therefore, the 16ms means that the only vCPU
is rescheduled and a large number of HTTP requests can be
processed by it. The intelligent interrupt direction leverages

all the vCPUs of the tested VM to process interrupts and
always selects the appropriate vCPU as the new destination
of arrived interrupts. That is the reason why it can reduce
the average HTTP served time.

7 OVERHEAD ANALYSIS

The intelligent interrupt redirection involves two main op-
erations. The first operation is the tracing of the vCPU
scheduling status, which is performed when a vCPU thread
is scheduled or descheduled. Compared to the heavy con-
text switch, the overhead incurred by this operation is
negligible. The second operation is the modification of the
interrupt destination ID, which is also negligible in the
overhead.

The perceptive mode switch algorithm in the hybrid I/O
handling scheme performs prompt switches between the
polling mode and the notification mode. Once the workload
in one polling cycle does not reach the predefined quota, the
handler returns to the notification mode immediately. It can
be seen that it does not incur ineffective polling operations
and the overhead is negligible.

The optimistic mode switch algorithm in the hybrid
I/O handling is the major source of ES2 overhead. Once
a new ingress packet is captured, the TX virtual queue
is polled optimistically a certain number of times, which
inevitably introduces ineffective polling operations. In order
to reduce the wasted CPU cycles, a sleeping scheme is
adopted for the back-end I/O thread, as described in section
5.3. We collected the average CPU usage of the back-end I/O
thread in the Memcached Throughput Testing to evaluate
the overhead incurred by the optimistic mode switch. In
the case of one tested VM, the hybrid I/O handling along
with the optimistic mode switch algorithm brings a 35%
throughput enhancement over the PI baseline. At the same
time , the CPU usage of the back-end I/O thread increases
from 13.58% to 18.6%. So the overhead of the optimistic
mode switch algorithm can be calculated by:

18.6− 13.58× (1 + 35%)

13.58× (1 + 35%)
= 1.45%

In consideration of the 35% throughput enhancement, the
incurred 1.45% overhead is acceptable.

8 APPLICABILITY OF ES2 TO SR-IOV
As mentioned in section 2.2, the advent of the direct device
assignment [14] and SR-IOV [34] allow a VM to directly
access its assigned device to issue I/O requests, without
triggering any VM exit. However, the interrupt delivery still
incurs hypervisor interventions. Each time an assigned de-
vice generates an interrupt, this interrupt is first intercepted
by the hypervisor with a VM exit. The hypervisor handles
this interrupt through the host IDT and then injects the
converted virtual interrupt into the VM owning this device.

ES2 leverages the hardware-based PI technology (to be
exact, called CPU-side PI) to eliminate the hypervisor in-
tervention for virtual interrupt delivery from an I/O core
(where the virtual device runs) to the running VM. A similar
hardware-based technology called Vt-d PI [14] is designed
for SR-IOV to avoid the VM exit when the assigned device

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

14

generates an interrupt into a running VM. For each interrupt
source from any assigned device, the hypervisor allocates a
posted-format Interrupt Remapping Table Entry (IRTE) for
it. By tracing the logical processor where the destination
vCPU resides, the Notification Destination (NDST) field
will be automatically updated. When an assigned device
generates a remappable interrupt according to the IRTE, this
interrupt with a special notification vector is delivered to the
logical processor specified by NDST. If the destination vCPU
is currently running, the processor hardware processes this
notification vector by transferring any posted interrupt to
the vAPIC page and directly delivering it to the running
vCPU through guest IDT, without any hypervisor interven-
tion.

Still, Vt-d PI may suffer a severe latency from the vCPU
scheduling while delivering interrupts as the destination
vCPU may be de-scheduled when an interrupt from the
assigned device arrives. Therefore, the intelligent interrupt
redirection scheme of ES2 can be applied to Vt-d PI for
optimization as well. By tracing the vCPU scheduling sta-
tus, we can update the IRTE (NDST field) to redirect the
interrupt to the most appropriate vCPU with the minimal
event processing latency.

9 CONCLUSION

This paper focused on the elimination of hypervisor in-
terventions in the virtual I/O event path, which trigger
frequent VM exits and lead to dramatic performance degra-
dation. We proposed ES2, a comprehensive scheme that si-
multaneously improves bidirectional I/O event delivery be-
tween guests and their devices. ES2 eliminates the interrupt-
related VM exits with the help of PI and efficiently delivers
guests’ I/O requests by the hybrid I/O handling scheme,
where two kinds of mode switch algorithms are offered. Fur-
thermore, ES2 adopts a strategy named intelligent interrupt
redirection to optimize PI, enhancing guests’ I/O respon-
siveness. We implemented the ES2 prototype with the KVM
hypervisor and the virtio paravirtual I/O standard. It does
not require any modification to guest OS or compromise any
virtualization benefit. Extensive experiments have demon-
strated that ES2 substantially improves the performance of
I/O virtualization in terms of throughput and latency.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable comments. This work is supported in
part by the National Natural Science Foundation of China
(No. 61972245), the National Key Research and Develop-
ment Program of China (No. 2016YFB1000502) and the
National Science Fund for Distinguished Young Scholars
(No. 61525204). Jian Li is the corresponding author.

REFERENCES

[1] X. Hu, W. Zhang, J. Li, R. Ma, F. Wu, and H. Guan, “Es2: Aiming at
an optimal virtual i/o event path,” in Proceedings of the International
Conference on Parallel Processing (ICPP), 2017, pp. 141–150.

[2] Wikipedia. (2016, Oct.) I/o virtualization. [Online]. Available:
https://en.wikipedia.org/wiki/I/O virtualization

[3] C. Waldspurger and M. Rosenblum, “I/o virtualization,” Commu-
nications of the ACM, vol. 55, no. 1, pp. 66–73, 2012.

[4] F.-F. Zhou, R.-H. Ma, J. Li, L.-X. Chen, W.-D. Qiu, and H.-B. Guan,
“Optimizations for high performance network virtualization,”
Journal of Computer Science and Technology (JCST), vol. 31, no. 1,
pp. 107–116, 2016.

[5] Cisco. (2018, Nov.) Cisco global cloud index: Forecast and
methodology, 2016-2021 white paper. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/white-paper-c11-738085.html

[6] M. Bourguiba, K. Haddadou, I. El Korbi, and G. Pujolle, “Im-
proving network i/o virtualization for cloud computing,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 25,
no. 3, pp. 673–681, 2014.

[7] J. Li, S. Xue, W. Zhang, Z. Qi, and H. Guan, “When i/o interrupt
becomes system bottleneck: Efficiency and scalability enhance-
ment for sr-iov network virtualization,” IEEE Transactions on Cloud
Computing (TCC), 2017.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” vol. 37, no. 5, pp. 164–177, 2003.

[9] R. Russell, “virtio: towards a de-facto standard for virtual i/o
devices,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 95–103, 2008.

[10] H. R. Mohebbi, O. Kashefi, and M. Sharifi, “Zivm: A zero-copy
inter-vm communication mechanism for cloud computing,” Com-
puter and Information Science (CIS), vol. 4, no. 6, p. 18, 2011.

[11] LWN. (2011, Apr.) macvtap/vhost tx zero copy support. [Online].
Available: https://lwn.net/Articles/439531/

[12] K. Meth, M. Rapoport, J. Nider, and R. Ladelsky, “Zero-copy
receive path in virtio,” in Proceedings of the ACM International
Systems and Storage Conference (SYSTOR), 2017, p. 19.

[13] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with sr-iov,” Journal of Parallel
and Distributed Computing (JPDC), vol. 72, no. 11, pp. 1471–1480,
2012.

[14] Intel. Intel R© virtualization technology for directed
i/o architecture specification. [Online]. Available: https:
//software.intel.com/en-us/download/intel-virtualization-
technology-for-directed-io-architecture-specification

[15] ——. (2018, Nov.) Intel R© 64 and ia-32 architectures
software developer’s manual volume 3c: System
programming guide, part 3. [Online]. Available:
https://software.intel.com/en-us/download/intel-64-and-ia-32-
architectures-sdm-volume-3c-system-programming-guide-part-3

[16] D. Ott. (2009, June) Virtualization and per-
formance: Understanding vm exits. [Online].
Available: https://software.intel.com/en-us/blogs/2009/06/25/
virtualization-and-performance-understanding-vm-exits

[17] J. Liu and B. Abali, “Virtualization polling engine (vpe): using
dedicated cpu cores to accelerate i/o virtualization,” in Proceedings
of the International Conference on Supercomputing (ICS), 2009, pp.
225–234.

[18] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li,
“Evaluating and optimizing i/o virtualization in kernel-based vir-
tual machine (kvm),” in Proceedings of the International Conference
on Network and Parallel Computing (NPC), 2010, pp. 220–231.

[19] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
A. Schuster, and D. Tsafrir, “Eli: bare-metal performance for i/o
virtualization,” in Proceedings of the 17th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012, pp. 411–422.

[20] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger, and
R. Ladelsky, “Efficient and scalable paravirtual i/o system,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2013.

[21] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh, “A comprehen-
sive implementation and evaluation of direct interrupt delivery,”
in Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), 2015, pp. 1–15.

[22] J. Herrmann, Y. Zimmerman, D. Parker, L. Novicha, J. East, and
S. Radvan. Virtualized hardware devices. [Online]. Available:
https://access.redhat.com/documentation/en-us/red hat
enterprise linux/7/html/virtualization getting started
guide/sec-virtualization getting started-products-virtualized-
hardware-devices

[23] Y. Dong, D. Xu, Y. Zhang, and G. Liao, “Optimizing network
i/o virtualization with efficient interrupt coalescing and virtual
receive side scaling,” in Proceedings of the IEEE International Confer-
ence on Cluster Computing (CLUSTER), 2011.

https://en.wikipedia.org/wiki/I/O_virtualization
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://lwn.net/Articles/439531/
https://software.intel.com/en-us/download/intel-virtualization-technology-for-directed-io-architecture-specification
https://software.intel.com/en-us/download/intel-virtualization-technology-for-directed-io-architecture-specification
https://software.intel.com/en-us/download/intel-virtualization-technology-for-directed-io-architecture-specification
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-volume-3c-system-programming-guide-part-3
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-volume-3c-system-programming-guide-part-3
https://software.intel.com/en-us/blogs/2009/06/25/virtualization-and-performance-understanding-vm-exits
https://software.intel.com/en-us/blogs/2009/06/25/virtualization-and-performance-understanding-vm-exits
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide/sec-virtualization_getting_started-products-virtualized-hardware-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide/sec-virtualization_getting_started-products-virtualized-hardware-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide/sec-virtualization_getting_started-products-virtualized-hardware-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide/sec-virtualization_getting_started-products-virtualized-hardware-devices

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

15

[24] I. Ahmad, A. Gulati, and A. Mashtizadeh, “vic: Interrupt coalesc-
ing for virtual machine storage device io,” in Proceedings of the
USENIX Annual Technical Conference (ATC), 2011.

[25] H. Guan, Y. Dong, K. Tian, and J. Li, “Sr-iov based network
interrupt-free virtualization with event based polling,” IEEE Jour-
nal on Selected Areas in Communications (JSAC), vol. 31, no. 12, pp.
2596–2609, 2013.

[26] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2012.

[27] Intel. (2019, Jan.) Data plane development kit. [Online]. Available:
https://www.dpdk.org/

[28] M. Ben-Yehuda, M. Factor, E. Rom, A. Traeger, E. Borovik, and
B.-A. Yassour, “Adding advanced storage controller functionality
via low-overhead virtualization,” in Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), 2012.

[29] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet.” in
Proceedings of the 5th Annual Linux Showcase & Conference, 2001.

[30] Wikipedia. (2018, Sep.) New api. [Online]. Available: https:
//en.wikipedia.org/wiki/New API

[31] K. Kontodimas, P. Kokkinos, Y. Kuperman, A. Houbavlis, and
E. Varvarigos, “Analysis and evaluation of scheduling policies for
consolidated i/o operations,” Journal of Grid Computing, vol. 15,
no. 1, pp. 107–125, 2017.

[32] L. Zeng, Y. Wang, X. Fan, and C. Xu, “Raccoon: A novel network
i/o allocation framework for workload-aware vm scheduling in
virtual environments,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 28, no. 9, pp. 2651–2662, 2017.

[33] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[34] Intel. Pci-sig sr-iov primer an introduc-
tion to sr-iov technology. [Online]. Avail-
able: https://www.intel.sg/content/dam/doc/application-note/
pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

[35] Wikipedia. (2018, Sep.) Memory-mapped i/o. [Online]. Available:
https://en.wikipedia.org/wiki/Memory-mapped I/O

[36] Intel. (2018, Nov.) Intel R© 64 and ia-32 architectures
software developer’s manual volume 3a: System
programming guide, part 1. [Online]. Available:
https://software.intel.com/en-us/download/intel-64-and-ia-32-
architectures-sdm-volume-3a-system-programming-guide-part-1

[37] K. Adams and O. Agesen, “A comparison of software and hard-
ware techniques for x86 virtualization,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 5, pp. 2–13, 2006.

[38] Intel. Intel R© ethernet controller x710/xxv710/xl710: Datasheet.
[Online]. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/datasheets/xl710-10-40-
controller-datasheet.pdf

[39] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, “Software tech-
niques for avoiding hardware virtualization exits,” in Proceedings
of the USENIX Annual Technical Conference (ATC), 2012.

[40] Y. Kuperman, E. Moscovici, J. Nider, R. Ladelsky, A. Gordon,
and D. Tsafrir, “Paravirtual remote i/o,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[41] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu, “vslicer: latency-aware virtual machine scheduling
via differentiated-frequency cpu slicing,” in Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing (HPDC), 2012, pp. 3–14.

[42] L. Cheng and C.-L. Wang, “vbalance: using interrupt load balance
to improve i/o performance for smp virtual machines,” in Proceed-
ings of the ACM Symposium on Cloud Computing (SOCC), 2012.

[43] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu, “vturbo: Ac-
celerating virtual machine i/o processing using designated turbo-
sliced core,” in Proceedings of the 2013 USENIX Annual Technical
Conference (ATC), 2013, pp. 243–254.

[44] L. Cheng and F. C. Lau, “Offloading interrupt load balancing
from smp virtual machines to the hypervisor,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 27, no. 11, pp. 3298–
3310, 2016.

[45] Wikipedia. (2019, Jan.) Symmetric multiprocessing. [On-
line]. Available: https://en.wikipedia.org/wiki/Symmetric
multiprocessing

[46] O. Sukwong and H. S. Kim, “Is co-scheduling too expensive for
smp vms?” in Proceedings of the European Conference on Computer
Systems (EuroSys), 2011.

[47] J. Stecklina, “Shrinking the hypervisor one subsystem at a time:
a userspace packet switch for virtual machines,” ACM SIGPLAN
Notices, vol. 49, no. 7, pp. 189–200, 2014.

[48] OASIS. (2016, Mar.) Virtual i/o device (virtio) version 1.0.
[Online]. Available: http://docs.oasis-open.org/virtio/virtio/v1.
0/virtio-v1.0.html

[49] C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving
fairness in the linux scheduler,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, pp. 34–43, 2008.

[50] Wikipedia. (2019, Feb.) Message signaled interrupts.
[Online]. Available: https://en.wikipedia.org/wiki/Message
Signaled Interrupts

[51] A. Kivity, “Performance monitoring for kvm guests,” in Proceed-
ings of the KVM Forum, 2011.

[52] Wikipedia. (2018, Dec.) Netperf. [Online]. Available: https:
//en.wikipedia.org/wiki/Netperf

[53] B. Fitzpatrick, “Distributed caching with memcached,” Linux Jour-
nal, vol. 2004, no. 124, p. 5, 2004.

[54] W. Reese, “Nginx: the high-performance web server and reverse
proxy,” Linux Journal, vol. 2008, no. 173, p. 2, 2008.

[55] R. Jones et al., “Netperf: a network performance benchmark,”
Information Networks Division, Hewlett-Packard Company, 1996.

[56] M. Zhuang and B. Aker. memaslap - load test-
ing and benchmarking a server. [Online]. Available:
http://docs.libmemcached.org/bin/memaslap.html

[57] A. S. Foundation. ab - apache http server benchmarking
tool. [Online]. Available: https://httpd.apache.org/docs/2.4/
programs/ab.html

[58] R. T. Fielding and G. Kaiser, “The apache http server project,” IEEE
Internet Computing, vol. 1, no. 4, pp. 88–90, 1997.

Xiaokang Hu is a Ph.D. candidate majoring in
the computer science and technology at Shang-
hai Jiao Tong University. He obtained his B.S.
degree in computer science and technology from
Nanjing University, China. His research interests
include virtualization, cloud computing, hetero-
geneous system and system security.

Jian Li is an Associate Professor in the School
of Software at Shanghai Jiao Tong University.
He obtained his Ph.D. in Computer Science from
the Institut National Polytechnique de Lorraine
(INPL) - Nancy, France in 2007. He is a mem-
ber of ACM, IEEE and CCF. His research in-
terests include virtualization, networking system
and cloud computing.

RuHui Ma is an Associate Professor in the De-
partment of Computer Science and Engineer-
ing at Shanghai Jiao Tong University. He re-
ceived his Ph.D. degree in computer science
from Shanghai Jiao Tong University in 2011.
His main research interests include virtual ma-
chines, computer architecture and compiling.

https://www.dpdk.org/
https://en.wikipedia.org/wiki/New_API
https://en.wikipedia.org/wiki/New_API
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Netperf
https://en.wikipedia.org/wiki/Netperf
http://docs.libmemcached.org/bin/memaslap.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2969660, IEEE
Transactions on Cloud Computing

16

Haibing Guan is a full professor in department
of Computer Science at Shanghai Jiao Tong
University, China. He received his Ph.D. degree
in computer science from the Tongji University
(China), in 1999. He is a member of ACM, IEEE
and CCF. His current research interests include
but are not limited to computer architecture,
compiling, virtualization and hardware/software
co-design.

